2022

Annual Drinking Water Quality Report

Glen Creek Subdivision
40-92-155
2 Wells
03/15/2023

Clarke Utilities, Inc. is pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is ground water wells from underground aquifers. Each of our wells has a 100 foot protected area from potential sources of contamination. Our treatment process includes disinfection at each source, corrosion control and mineral control as needed.

If you have any questions about this report or concerning your water utility, please contact Clarke Utilities at 919-662-0457 during the hours 8:30am – 5pm, Monday – Friday. We want our valued customers to be informed about their water utility.

Clarke Utilities routinely monitors for contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2022 and the last test results of contaminants that were not due to be tested in 2022. As water travels over the land or underground it can pick up substances or contaminants such as microbes, inorganic and organic chemicals, and radioactive substances. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. It's important to remember that the presence of these contaminants does not necessarily pose a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Treatment Technique (TT) - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

ND - NON DETECTED

The following tables list the contaminants that were detected in your drinking water.

2022 1 Distribution Sample per month Microbiological Contaminants in the Distribution System - For systems that collect *less than 40* samples per month.

Contaminant (units)	MCL Violation Y/N	Your Water	MCLG	MCL	Likely Source of Contamination
Total Coliform Bacteria (presence or absence)	N	NONE	0	1 positive sample / month* Note: If either an original routine sample and/or its repeat samples(s) are fecal	Naturally present in the environment
Fecal Coliform or <i>E. coli</i> (presence or absence)	N	NONE	0	coliform or <i>E. coli</i> positive, a Tier 1 violation exists.	Human and animal fecal waste

Disinfectant Residuals Summary

	Year Sampled	MRDL Violation Y/N	Your Water (highest RAA)	Range mg/l Low High	MRDLG	MRDL	Likely Source of Contamination
Chlorine (ppm)	2022	N	1.2 mg/l	1.1 1.4	4	4.0	Water additive used to control microbes

2022 Well #1 and Well#3 Entry Point

Nitrate/Nitrite Contaminants

Contaminant (units)	Sample MCL		Your	Range	MCLG	MCL	Lilala Carra of Cantarring tion
	Date	Violation Y/N	Water	Low High	WICLG	MCL	Likely Source of Contamination
Nitrate (as Nitrogen) (ppm)	01/10/22 01/10/22	N N	ND ND	ND	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Nitrite (as Nitrogen) (ppm)	NA	N	ND	ND	1	1	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits

2020 10 Distribution Samples collected by selected customers Lead and Copper Contaminants

Number of Sample Your Contaminant (units) MCLG sites found ΑL Likely Source of Contamination Date Water above the AL Copper (ppm) Corrosion of household plumbing .051 0 1.3 11/2020 AL=1.3 (90th percentile) systems; erosion of natural deposits

Lead (ppb) (90 th percentile)	11/2020	ND	0	0	AL=15	Corrosion of household plumbing systems; erosion of natural deposits
---	---------	----	---	---	-------	--

2022 Well #1 and Well #3 Entry Point

Inorganic Contaminants

organic Contaminan	ts						
Contaminant (units)	Sample Date	MCL Violation Y/N	Your Water	Range Low High	MCLG	MCL	Likely Source of Contamination
Antimony (ppb)	02/08/22	N	ND	N/A	6	6	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic (ppb)	02/08/22	N	ND	N/A	0	10	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
Barium (ppm)	02/08/22	N	ND	N/A	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Beryllium (ppb)	02/08/22	N	ND	N/A	4	4	Discharge from metal refineries and coal- burning factories; discharge from electrical, aerospace, and defense industries
Cadmium (ppb)	02/08/22	N	ND	N/A	5	5	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints
Chromium (ppb)	02/08/22	N	ND	N/A	100	100	Discharge from steel and pulp mills; erosion of natural deposits
Cyanide (ppb)	02/08/22	N	ND	N/A	200	200	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
Fluoride (ppm)	02/08/22	N	1.1 mg/l	N/A	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Mercury (inorganic) (ppb)	02/08/22	N	ND	N/A	2	2	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland
Selenium (ppb)	02/08/22	N	ND	N/A	50	50	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Thallium (ppb)	02/08/22	N	ND	N/A	0.5	2	Leaching from ore-processing sites; discharge from electronics, glass, and drug factories

2022 MRT Maximum Residence Time

Stage 2 Disinfection Byproduct Compliance - Based upon Locational Running Annual Average (LRAA)

Disinfection Byproduct	Year Sampled	MCL Violation Y/N	Your Water (highest LRAA)	Range Low High	MCLG	MCL	Likely Source of Contamination
TTHM (ppb)	8/16	N	ND	ND	N/A	80	Byproduct of drinking water disinfection
5120 GCT							
HAA5 (ppb)	08/16	N	ND	ND	N/A	60	Byproduct of drinking water disinfection
5120 GCT							

Other Miscellaneous Water Characteristics Contaminants

Contaminant (units)	Sample Date	Your Water	Range Low High	SMCL
Iron (ppm)	02/08/22	.108 mg/l	.108 mg/l	0.3 mg/L
Manganese (ppm)	02/08/22	ND	ND	0.05 mg/L
Nickel (ppm)	02/08/22	ND	ND	N/A
Sodium (ppm)	02/08/22	133.250 mg/l	133.250 mg/l	N/A
Sulfate (ppm)	02/08/22	141 mg/l	141 mg/l	250 mg/L
рН	02/08/22	7.3 units	7.43units	6.5 to 8.5

2020/2022 Well#1 and Well#3 Entry Point Synthetic Organic Chemical (SOC) Contaminants Including Pesticides and Herbicides

Contaminant (units)	Sample	MCL Violation	Your	Range	MCLG	MCL	Likely Source of Contamination	
Contaminant (units)	Date	Y/N	Water	Low High	MCLG	WICL	Dikery Source of Contamination	
2,4-D (ppb)	05/25/22 06/10/20	N	ND	N/A	70	70	Runoff from herbicide used on row crops	
2,4,5-TP (Silvex) (ppb)	05/25/22 06/10/20	N	ND	N/A	50	50	Residue of banned herbicide	
Alachlor (ppb)	05/25/22 06/10/20	N	ND	N/A	0	2	Runoff from herbicide used on row crops	
Atrazine (ppb)	05/25/22 06/10/20	N	ND	N/A	3	3	Runoff from herbicide used on row crops	
Benzo(a)pyrene (PAH) (ppt)	05/25/22 06/10/20	N	ND	N/A	0	200	Leaching from linings of water storage tanks and distribution lines	
Carbofuran (ppb)	05/25/22 06/10/20	N	ND	N/A	40	40	Leaching of soil fumigant used on rice and alfalfa	
Chlordane (ppb)	05/25/22 06/10/20	N	ND	N/A	0	2	Residue of banned termiticide	
Dalapon (ppb)	05/25/22 06/10/20	N	ND	N/A	200	200	Runoff from herbicide used on rights of way	
Di(2-ethylhexyl) adipate (ppb)	05/25/22 06/10/20	N	ND	N/A	400	400	Discharge from chemical factories	
Di(2-ethylhexyl) phthalate (ppb)	05/25/22 06/10/20	N	ND	N/A	0	6	Discharge from rubber and chemical factories	

DBCP [Dibromochloropropane] (ppt)	05/25/22 06/10/20	N	ND	N/A	0	200	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards
Dinoseb (ppb)	05/25/22 06/10/20	N	ND	N/A	7	7	Runoff from herbicide used on soybeans and vegetables
Endrin (ppb)	05/25/22 06/10/20	N	ND	N/A	2	2	Residue of banned insecticide
EDB [Ethylene dibromide] (ppt)	05/25/22 06/10/20	N	ND	N/A	0	50	Discharge from petroleum refineries
Heptachlor (ppt)	05/25/22 06/10/20	N	ND	N/A	0	400	Residue of banned pesticide
Heptachlor epoxide (ppt)	05/25/22 06/10/20	N	ND	N/A	0	200	Breakdown of heptachlor
Hexachlorobenzene (ppb)	05/25/22 06/10/20	N	ND	N/A	0	1	Discharge from metal refineries and agricultural chemical factories
Hexachlorocyclo- pentadiene (ppb)	05/25/22 06/10/20	N	ND	N/A	50	50	Discharge from chemical factories
Lindane (ppt)	05/25/22 06/10/20	N	ND	N/A	200	200	Runoff/leaching from insecticide used on cattle, lumber, gardens
Methoxychlor (ppb)	05/25/22 06/10/20	N	ND	N/A	40	40	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, livestock
Oxamyl [Vydate] (ppb)	05/25/22 06/10/20	N	ND	N/A	200	200	Runoff/leaching from insecticide used on apples, potatoes and tomatoes
PCBs [Polychlorinated biphenyls] (ppt)	05/25/22 06/10/20	N	ND	N/A	0	500	Runoff from landfills; discharge of waste chemicals
Pentachlorophenol (ppb)	05/25/22 06/10/20	N	ND	N/A	0	1	Discharge from wood preserving factories
Picloram (ppb)	05/25/22 06/10/20	N	ND	N/A	500	500	Herbicide runoff
Simazine (ppb)	05/25/22 06/10/20	N	ND	N/A	4	4	Herbicide runoff
Toxaphene (ppb)	05/25/22 06/10/20	N	ND	N/A	0	3	Runoff/leaching from insecticide used on cotton and cattle

2020/2022 Well#1 and Well#3 Entry Point Volatile Organic Chemical (VOC) Contaminants

Volatile Organic Chemical	(100)		113	1			T
Contaminant (units)	Sample Date	MCL Violation Y/N	Your Water	Range Low High	MCLG	MCL	Likely Source of Contamination
Benzene (ppb)	03/24/22 11/03/20	N	ND	N/A	0	5	Discharge from factories; leaching from gas storage tanks and landfills
Carbon tetrachloride (ppb)	03/24/22 11/03/20	N	ND	N/A	0	5	Discharge from chemical plants and other industrial activities
Chlorobenzene (ppb)	03/24/22 11/03/20	N	ND	N/A	100	100	Discharge from chemical and agricultural chemical factories
o-Dichlorobenzene (ppb)	03/24/22 11/03/20	N	ND	N/A	600	600	Discharge from industrial chemical factories
p-Dichlorobenzene (ppb)	03/24/22 11/03/20	N	ND	N/A	75	75	Discharge from industrial chemical factories
1,2 – Dichloroethane (ppb)	03/24/22 11/03/20	N	ND	N/A	0	5	Discharge from industrial chemical factories
1,1 – Dichloroethylene (ppb)	03/24/22 11/03/20	N	ND	N/A	7	7	Discharge from industrial chemical factories
cis-1,2-Dichloroethylene (ppb)	03/24/22 11/03/20	N	ND	N/A	70	70	Discharge from industrial chemical factories
trans-1,2-Dichloroethylene (ppb)	03/24/22 11/03/20	N	ND	N/A	100	100	Discharge from industrial chemical factories
Dichloromethane (ppb)	03/24/22 11/03/20	N	ND	N/A	0	5	Discharge from pharmaceutical and chemical factories
1,2-Dichloropropane (ppb)	03/24/22 11/03/20	N	ND	N/A	0	5	Discharge from industrial chemical factories

Ethylbenzene (ppb)	03/24/22 11/03/20	N	ND	N/A	700	700	Discharge from petroleum refineries
Styrene (ppb)	03/24/22 11/03/20	N	ND	N/A	100	100	Discharge from rubber and plastic factories; leaching from landfills
Tetrachloroethylene (ppb)	03/24/22 11/03/20	N	ND	N/A	0	5	Discharge from factories and dry cleaners
1,2,4 –Trichlorobenzene (ppb)	03/24/22 11/03/20	N	ND	N/A	70	70	Discharge from textile-finishing factories
1,1,1 – Trichloroethane (ppb)	03/24/22 11/03/20	N	ND	N/A	200	200	Discharge from metal degreasing sites and other factories
1,1,2 –Trichloroethane (ppb)	03/24/22 11/03/20	N	ND	N/A	3	5	Discharge from industrial chemical factories
Trichloroethylene (ppb)	03/24/22 11/03/20	N	ND	N/A	0	5	Discharge from metal degreasing sites and other factories
Toluene (ppm)	03/24/22 11/03/20	N	ND	N/A	1	1	Discharge from petroleum factories
Vinyl Chloride (ppb)	03/24/22 11/03/20	N	ND	N/A	0	2	Leaching from PVC piping; discharge from plastics factories
Xylenes (Total) (ppm)	03/24/22 11/03/20	N	ND	N/A	10	10	Discharge from petroleum factories; discharge from chemical factories

2018/2021 Well#1 and Well#3 Entry Point Quarterly Composite

Radiological Contaminants

autorogicur Comunitina	1103						
Contaminant (units)	Sample Date	MCL Viola tion Y/N	Your Water	Range Low High	MCLG	MCL	Likely Source of Contamination
Alpha emitters (pCi/L)	10/23/18 02/04/21	N	4.6 pCl ND	N/A	0	15	Erosion of natural deposits
Beta/photon emitters (pCi/L)	02/12/18 02/04/21	N	N/A	N/A	0	50 *	Decay of natural and man-made deposits
Combined radium (pCi/L)	02/12/18 02/04/21	N	1.9pCl ND	1.9 pCi/L ND	0	5	Erosion of natural deposits
Uranium (pCi/L)	02/12/18 02/04/21	N	ND ND	N/A	0	20.1	Erosion of natural deposits

^{*} Note: The MCL for beta/photon emitters is 4 mrem/year. EPA considers 50 pCi/L to be the level of concern for beta particles.

As you can see by the table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some constituents have been detected. The EPA has determined that your water IS SAFE at these levels.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

MCL's are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

Total Coliform: The Total Coliform Rule requires water systems to meet a stricter limit for coliform bacteria. Coliform bacteria are usually harmless, but their presence in water can be an indication of disease-causing bacteria. When coliform bacteria are found, special follow-up tests are done to determine if harmful bacteria are present in the water supply. If this limit is exceeded, the water supplier must notify the public by newspaper, television or radio. To comply with the stricter regulation, we have increased the average amount of chlorine in the distribution system.

Nitrates: As a precaution we always notify physicians and health care providers in this area if there is ever a higher than normal level of nitrates in the water supply.

Lead: "If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Clarke Utilities, Inc. is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead."

In our continuing efforts to maintain a safe and dependable water supply it may be necessary to make improvements in your water system. The costs of these improvements may be reflected in the rate structure. Rate adjustments may be necessary in order to address these improvements.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Clarke Utilities works around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

"Providing Quality Water Service, while protecting our Most Valuable Natural Resource"